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This paper compares two algorithms for three-dimensional

target localization from passive radar measurements. The

algorithms use bistatic range measurements from multiple

transmitter-receiver pairs to calculate the target position.

The algorithms derived are based on the methods known for

time-difference-of-arrival (TDOA) systems, namely spherical

interpolation (SI) and spherical intersection (SX). Both algorithms

rely on closed-form equations. A theoretical accuracy analysis

of the algorithms is provided. This analysis is verified with

Monte-Carlo simulations and a real-life example is presented.
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I. INTRODUCTION

This paper deals with a problem of target

localization based on measurements from passive

radar. Passive radar, also known as passive coherent

location (PCL) radar, passive bistatic radar (PBR), or

passive covert radar (PCR), uses existing transmitters

as illuminators of opportunity [4, 9, 3, 14, 7]. By

comparing the reference signal with an echo reflected

from a target, the relative delay can be measured.

The delay is related to the bistatic range, which is

the sum of transmitter-target and target-receiver

ranges. The locus of points of constant bistatic range

is an ellipsoid with foci located at the transmitter

and receiver positions. If bistatic measurements

corresponding to multiple transmitter-receiver pairs

are available, the target position can be calculated as

the intersection of different ellipsoids. To localize a

target unambiguously in three-dimensional space, at

least three ellipsoids are required.

The problem of localization in passive radar is

related to hyperbolic positioning, where a position

is calculated by measuring time differences of

arrival (TDOA). In this case, the locus of points

of constant TDOA defines a hyperbola, when

a two-dimensional situation is considered, or a

hyperboloid in three-dimensional space. Localizing

the target consists in finding the intersection of the

hyperbolas (or hyperboloids).

Both localization problems, in passive radar as

well as in a TDOA system, are potentially challenging

due to the nonlinear relationships between the desired

target position and measured parameters (bistatic

ranges or TDOAs). Several solutions using simple

closed-form equations have been proposed for TDOA

systems [11, 10, 13, 1, 8].

In open literature, an analytic solution for finding

the intersection points of bistatic range ellipsoids in

three-dimensional Cartesian space has not been found.

As a result, the authors of this paper have decided to

derive their own analytic methods for localization in

passive radars based on two established approaches

to TDOA localization, namely spherical-interpolation

(SI) method [10, 1] and spherical-intersection (SX)

method [13, 8]. The two algorithms proposed for

passive radar are shown to differ from known TDOA

solutions in sign only. The methods are compared

from the viewpoint of their accuracy. This paper is

an extension of our work presented in [5].

The problem of target localization considered

in this paper is a static one, i.e., given the bistatic

measurements at a specific point in time, the target

position is calculated. Another consideration is the

problem of combining the process of localization

with the tracking algorithm. This can be achieved in

several ways. For example, bistatic trackers can be

used for each of the transmitters separately followed

by the localization algorithm, or the localization on
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raw bistatic data can be followed by a Cartesian

tracker. This problem is, however, outside the scope

of this paper. The problem of target tracking in

multistatic passive radar is addressed in [15] and

[2]. Regardless of the tracker used, the localization

algorithms proposed in this paper are deemed to be

important, an example of this being their use in the

initialization of the Cartesian tracks.

We consider a situation with only one target.

In reality, multiple targets may be observed, which

can lead to a ghost target phenomenon. This occurs

when the ellipsoids corresponding to different targets

intersect in a way that gives rise to a spurious target.

The ambiguity in the association of the bistatic

measurements to the targets has to be resolved. This

can be facilitated with a tracking algorithm through

analyzing the history of the measurements–if they

are not consistent, the target is deemed false. The

need to solve such ambiguities does not render the

presented algorithms useless; on the contrary, they can

be used to calculate candidate target position estimates

by considering all possible combinations of the

measurements. Since the number of possibilities grows

exponentially with the number of targets, additional

emphasis is put on the speed of the algorithm for

calculating position estimates.

The paper is organized as follows. Section II

formulates the problem of target localization in

multistatic passive radar. The two algorithms are

derived in Section III. In the same section, the

analysis of the theoretical accuracy is carried out.

Section IV is devoted to the numerical results obtained

by processing simulated and real-life data. The paper

ends with conclusions in Section V.

II. PROBLEM FORMULATION

Consider the system geometry shown in Fig. 1.

Here we deal with one receiver and multiple

transmitters; however, the situation with multiple

receivers and a single transmitter is equivalent.

Without loss of generality we assume that the receiver

is located at position [0,0,0]T. The number of

transmitters N is arbitrary, but not lower than three.

The ith transmitter is located at position [xi,yi,zi]
T for

i= 1, : : : ,N, and the target is located at coordinates

xt = [xt,yt,zt]
T (we assume a point scatterer target).

We focus on the estimation of the position of the

target only; therefore, the target velocity is not taken

into account. The distance between the target and the

receiver is

Rt =

q
x2t + y

2
t + z

2
t = kxtk (1)

where kxk=
p
xTx is the norm of the vector. The

distance between the target and the ith transmitter is

Rti =

q
(xi¡ xt)2 + (yi¡ yt)2 + (zi¡ zt)2

= kxi¡ xtk (2)

Fig. 1. Geometry of target localization in passive radar (for 3

transmitters).

and the base range corresponding to the ith transmitter

can be calculated as

Rbi =

q
x2i + y

2
i + z

2
i = kxik: (3)

In passive radar, a crossambiguity function is

calculated between the reference signal and the

surveillance signal (containing target echoes) [4].

Calculation of the crossambiguity function consists

in correlating the two signals with appropriate delay

and frequency shift. If the delay and frequency shift

of the reference signal match those of the target echo,

a correlation peak appears. From the position of the

peak, the values of the TDOA1 and Doppler shift can

be calculated. The TDOA multiplied by the speed

of light is the range difference between the direct

and indirect paths. In the passive radar community,

this range difference is usually called bistatic range.

However, for the purpose of this paper, we define the

bistatic range as the sum of transmitter-target range

Rti and target-receiver range Rt. According to this

definition, the bistatic range is the range difference

measured by passive radar plus the base range Rbi

Ri = (Rti+Rt¡Rbi) +Rbi = Rti+Rt
=

q
(xi¡ xt)2 + (yi¡ yt)2 + (zi¡ zt)2 +

q
x2t + y

2
t + z

2
t :

(4)

The vector of the bistatic ranges corresponding to N

transmitters is denoted as

r=

266664
R1

R2

...

RN

377775
N£1

: (5)

1In this context, TDOA is calculated as the difference between the

transmitter-target-receiver and transmitter-receiver paths. This is

something different than in TDOA systems, where time differences

between signal transmission from a single source and signal

reception by different receivers are considered.
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Define a vector of bistatic ranges r̂(x̂t) =

[R̂1, R̂2, : : : , R̂N]
T calculated for an assumed position

estimate x̂t = [x̂t, ŷt, ẑt]
T using (4). Our aim is to find

the target position estimate x̂t that minimizes the
norm of the error between the vector of measured
bistatic ranges r and the vector of bistatic ranges r̂(x̂t)
corresponding to the estimated position x̂t:

x̂t = argmin
x̂t

kr¡ r̂(x̂t)k: (6)

The above optimization problem is difficult to
solve due to the nonlinear relationship between the
target position and its bistatic parameters. The cost
function (norm of the error) may have local minima.
Therefore, the application of standard numerical
optimization methods may not give the correct result
if the starting point is chosen incorrectly. Moreover,
iterative optimization methods are usually time
consuming, so a simple closed-form solution is
preferred if one can be found.

III. THE ALGORITHM

A. Position Estimation

We show that it is possible to find an estimate
of the target position by closed-form equations that
approximately satisfy (6). This can be achieved by
rearranging (4) in the following way:

Ri¡
q
x2t + y

2
t + z

2
t

=

q
(xi¡ xt)2 + (yi¡ yt)2 + (zi¡ zt)2: (7)

By squaring both sides and rearranging the terms, we
obtain

xixt+ yiyt+ zizt¡Ri
q
x2t + y

2
t + z

2
t

= 1
2
(x2i + y

2
i + z

2
i ¡R2i ): (8)

To simplify notation, we introduce a matrix of
transmitter positions

S=

266664
x1 y1 z1

x2 y2 z2

...
...

...

xN yN zN

377775
N£3

(9)

and an additional vector defined as

z=
1

2

266664
x21 + y

2
1 + z

2
1 ¡R21

x22 + y
2
2 + z

2
2 ¡R22

...

x2N + y
2
N + z

2
N ¡R2N

377775
N£1

: (10)

With the above notation, (8) can be written for N
transmitters in a matrix form:

Sxt = z+ rRt: (11)

The unknowns in this equation are the target position

xt and the target-receiver range Rt. The above equation

is linear in xt as well as in Rt. Assuming that Rt is
known, the solution in the least squares sense can be

found as

x̂t = (S
TS)¡1STz+(STS)¡1STrRt: (12)

Before calculating (12), however, the value of Rt has

to be found.

In the literature, two methods for calculating Rt
can be found in the context of TDOA localization: SI

[13, 1] and SX [10, 8]. In SI, Rt is calculated from a

certain quotient, while in SX, Rt is obtained from a

quadratic equation. These algorithms were compared

in [12], which showed that the SX method is much

more robust to measurement errors in the case of a

TDOA system.

We derive two analogous algorithms for the

passive radar case and compare them in Section IV.

We show that for the analyzed passive radar scenario

the SI method provides better results than SX.

Before considering the two methods for calculating

Rt, it is worth mentioning that (12) is not the solution

of the original problem (6), but a different problem

resulting from a rearrangement of the equations.

However, those two problems are closely related.

In the case of lack of measurement errors, they

both lead to the same results. In a realistic scenario,

when measurement errors are present, the proposed

approach also leads to satisfactory results, which is

shown later in the paper.

B. Spherical-Interpolation Method

Equation (12) can be compactly written as

x̂t = S
¤(z+ rRt) (13)

where S¤ = (STS)¡1ST. The above equation can
be used to compute the equation error ², which is
the difference of the right-hand and left-hand sides

of (11):

²= z+ rRt¡SS¤(z+ rRt) = (I¡SS¤)(z+ rRt):
(14)

In this way, we eliminated the unknown x̂t. We
introduce a matrix

T= I¡SS¤: (15)

This matrix is idempotent, i.e., T2 = T, and it is

symmetrical, i.e., T= TT. Using these properties, Rt
can be calculated by minimizing the norm of the error

(14) k²k as
R̂t =¡

rTTz

rTTr
: (16)

In this method, the condition R̂t = kx̂tk has not been
enforced anywhere; in general, R̂t calculated from

(16) and kx̂tk will differ. To obtain the target position
estimate x̂t, the value of R̂t calculated from (16) is

substituted into (12) or (13).
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The SI method cannot be used in the case of a

minimal number of transmitters (3 in the considered

case), since the residual ² in (14) would equal 0.

C. Spherical-Intersection Method

The second method for calculating Rt is based

on the SI method [10, 8]. Unlike the method in the

previous subsection, it can be used with a minimal

number of transmitters (3 in the considered case).

The derivation of this method is as follows. First, new

variables are introduced:

a= (STS)¡1STz (17)

and

b= (STS)¡1STr: (18)

With this notation, (11) can be written as

xt = a+bRt: (19)

Now, by substituting xTt xt = kxtk2, inserting the
above equation into (1), and squaring both sides, we

eliminate xt and obtain a quadratic equation in Rt:

(bTb¡ 1)R2t +2aTbRt+ aTa= 0: (20)

The solution of this equation is

R̂t =
¡2aTb¨

p
4(aTb)2¡ 4(bTb¡1)aTa
2(bTb¡ 1) : (21)

When R̂t is found, it can be substituted into (12) to

find the position estimate x̂t.
If the discriminant of (20) is larger than 0, two

real-valued solutions for R̂t exist. In a typical situation,

the transmitters are placed close to the x-y plane, so

the geometry is almost symmetrical with respect to

this plane. Usually, the two values of R̂t are similar

and correspond to the true target and its mirror

reflection with respect to the x-y plane. The correct

position estimate can be chosen by considering the

height of the estimate. Since most applications of

passive radar involve flying objects, the position

estimate with positive height can be selected; this

simple approach is used in this paper. However, one

has to be aware that this may not always be the best

approach. An example of this is in the detection

of very low-flying targets, or operating in an area

with a depression. The selection of a solution can be

facilitated in the case where more than the minimal

number of transmitters are available (at least 4). In

such cases, one could compute the error norm of both

solutions to (20) and choose the one with the lowest

error.

It may also happen that, due to the measurement

errors, the discriminant of the quadratic equation (20)

is less than 0, so there is no real-valued solution for

R̂t. Our experiments have shown that even in such

situations, an acceptable solution can still be found.

If the discriminant is less than zero, (20) has two

complex solutions which are a conjugate pair. Taking

the real part of this result and substituting it into (12)

still yields a valid position estimate. A drawback of

this approach is that the algorithm is deprived of

the possibility of rejecting bistatic measurements

that are not consistent–every combination of the

bistatic measurements will yield a result. This can be

disadvantageous from the point of view of the ghost

target phenomenon.

The two algorithms for passive radar differ from

their TDOA counterparts in sign only [12]. The reason

for this is that here we deal with sums of ranges

instead of differences.

D. Estimation Accuracy

It is desirable to know the accuracy of the

estimated target position, for example, in order to

properly initialize the covariance matrix in a tracking

filter. Usually, the accuracy of the measurement of

the bistatic parameters is known (it can be estimated

from the size of the range resolution cell and the

signal-to-noise ratio). Our aim is to calculate the

accuracy of the position estimate in Cartesian

coordinates based on the known accuracy of the

bistatic parameters. Denote the variance of the bistatic

range error corresponding to the ith transmitter as ¾2Ri.

The covariance matrix R of the measurement error of

the bistatic parameters is given by

RN£N = E[rr
T] = diag

³
[¾2R1, : : : ,¾

2
RN| {z }]´: (22)

The notation above means that R is a diagonal matrix
created from the N-element vector of variances

corresponding to N transmitters.

Since the relationship between the target position

and its bistatic parameters is nonlinear, it is impossible

to give a straightforward expression for the covariance

matrix of the position estimate; however, approximate

formulae can be obtained. Here we follow the analysis

carried out in [13]. Using a first-order Taylor series

expansion, the covariance matrix of the position

estimate can be approximated as

P3£3 = E[x̂tx̂
T
t ]¼

μ
@xt
@r

¶
R

μ
@xt
@r

¶T
(23)

where (@xt=@r)3£N is the Jacobian. To calculate the
Jacobian, differentiate (11) with respect to r:

S
@xt
@r

=
@z

@r
+
@(rRt)

@r
: (24)

The first component on the right-hand side of the

above equation can be easily calculated as

@z

@r
=¡

266664
R1 0

R2

. . .

0 RN

377775
N£N

=¡¤: (25)
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TABLE I

Relative Positions of the Transmitters used for Comparison of the

Algorithms

Transmitter x-offset (km) y-offset (km) z-offset (km)

Tx1 20.00 0.00 0.00

Tx2 ¡30:00 5.00 0.15

Tx3 ¡10:00 ¡15:00 0.10

Tx4 10.00 ¡25:00 0.05

Next we calculate the derivative of the second

component of the right-hand side of (24):

@(rRt)

@r
= IRt+ r

@Rt
@r

(26)

where I is the identity matrix. To calculate @Rt=@r, we

use the chain rule:

@Rt
@r

=
@Rt
@xt

@xt
@r

=
xTt
kxtk

@xt
@r
: (27)

Substituting (25) and (26) into (24) yields

S
@xt
@r

=¡¤+ IRt+ r
xTt
kxtk

@xt
@r
: (28)

By rearranging the above equation, we can express the

Jacobian matrix as

@xt
@r

= (¢T¢)¡1¢T(IRt¡¤) (29)

where

¢= S¡ r x
T
t

kxtk
: (30)

The covariance matrix of the position estimate can

now be calculated using (23). The values on the

diagonal of P3£3 correspond to the variances of the
position error in the x, y, and z directions.

In the above considerations only the variance of

the estimation error is taken into account. As the

analyzed problem is highly nonlinear, the nonlinearity

and estimation bias can lead to divergence of the

theoretical and practical results. However, analysis of

the variance of the estimator often illustrates useful

trends even when compared against biased estimators.

In the next section we show that in most cases

simulation and theoretical analysis are consistent.

However for altitude estimation, where it is necessary

to select one of the possible solutions of the quadratic

equation, results from simulations differ from the

theory.

IV. NUMERICAL RESULTS

A. Simulation Results

To compare the performance of the two presented

algorithms, a simulation has been carried out with

four transmitters (the minimal number of transmitters

required by the SI method), one receiver, and one

target. The positions of the transmitters are listed in

Fig. 2. Target position versus estimated range to target Rt.

Table I. The target position was xt = [5,5,5]
T km. The

measurements of the bistatic range were distorted by

an additive zero-mean Gaussian error with standard

deviation ¾Ri = 10 m, for i = 1, : : : ,4.

Fig. 2 shows the x, y, and z coordinates of the

target position calculated according to (12) versus Rt
for a single run of the experiment. Since the equation

is linear in Rt, the position also changes linearly. The

position marked with corresponds to the true target

position. As can be seen, the true position does not

lie on the line because of measurement errors. The

positions marked with 4 and 5 correspond to the

two roots of the quadratic equation (20), which are

the solution of the SX method. The two positions are

quite close to each other and to the true position in

the x and y coordinates. However, they correspond

to two positions symmetrical with respect to the x-y

plane–one of positive and the other of negative

height. The position calculated with the SI method

is marked with }. The calculated value of Rt differs
slightly from the solutions, obtained with the SX

method. This difference has negligible influence on

the estimation in the x and y directions (all values are

close to the assumed [5,5] km position). However,

the incorrect estimation of Rt in the SI method led

to an unacceptable error in the z coordinate (the z

coordinate was estimated as ¡18 km in the considered

example, as compared with the assumed +5 km).

As was mentioned earlier, the condition that

Rt = kx̂tk has been enforced in the derivation of
the SX algorithm, but not in the SI algorithm. The

relationship between the range to the target Rt set

in (12) and the range to the target calculated from

the estimated position x̂t is shown in Fig. 3. The

horizontal axis corresponds to Rt (which is the

independent variable) used in (12) to calculate the

target position x̂t. The vertical axis corresponds to

the range to the target calculated as Rtc = kx̂tk. The
solid line is the curve of calculated range to the target
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Fig. 3. Calculated range to the target Rtc versus set range to

target Rt.

Rtc. The dashed line is the reference line Rtc = Rt (on

the plot, this line is almost horizontal due to different

scales on the horizontal and vertical axes). The solid

line intersects the dashed line at two points, which

correspond to the two solutions of the quadratic

equation of the SX algorithm (marked with 4 and 5).
The solution corresponding to the SI method (marked

with }) is far away from the dashed line.

This example shows the importance of estimating

Rt correctly. The properties of the two algorithms,

SI and SX, presented in this example are more

general, as confirmed in our statistical experiments.

Table II shows the results of 1000 Monte-Carlo

simulations of the analyzed scenario. The accuracies

calculated for the two algorithms clearly indicate

that the SX algorithm outperforms the SI algorithm

in this scenario. For this reason, we suggest that

the SX method be used in practical applications.

This stands in contradiction to the result presented

in [12] in the context of TDOA localization, where

it was shown that the SI algorithm was better than

the SX algorithm. The reason for different results

in the TDOA system and passive radar is that the

formulation of the problem is different: in TDOA

system we operate on differences of ranges, and in

passive radar on sums of ranges. Moreover, in the

scenario analyzed in [12], closely spaced receivers and

a source placed far away were assumed. On the other

hand, a typical situation in passive radar involves

transmitters (or receivers) distributed over a relatively

large area, compared with the distance to the target.

An additional advantage of the SX method, apart from

better accuracy, is that it can be used in the case of a

minimal number of transmitters. Consequently, the SX

method is the focus of the remaining part of the paper.

The SX algorithm was tested further by

performing a series of Monte-Carlo simulations in a

three-transmitter scenario. The scenario was based

TABLE II

Comparison of the Estimation Accuracy

Algorithm ¾x (m) ¾y (m) ¾z (m)

Spherical interpolation (SI) 63.16 13.54 25748.91

Spherical intersection (SX) 6.36 12.28 18.96

TABLE III

Relative Positions of the Transmitters

Transmitter x-offset (km) y-offset (km) z-offset (km)

Tx1 (Pruszkow) 9.63 ¡2:66 0.20

Tx2 (Raszyn) 19.00 ¡14:53 0.26

Tx3 (Warsaw) 27.40 3.15 0.22

on the localization of the transmitters and receiver

in a real measurement campaign, which is described

at the end of this section. The positions of the three

transmitters, Pruszkow, Raszyn and Warsaw, are listed

in Table III.

The simulations were performed over an area of

50£ 50 km. The altitude of the target was fixed at
10 km. The bistatic measurements were disturbed by

an additive zero-mean Gaussian random variable with

standard deviation ¾R = 300 m; this value is typical

for an FM-based passive radar. The experiment was

repeated 1000 times for each position on the grid. The

experimental accuracy was calculated as the standard

deviation of the error between the estimated and true

parameters. The theoretical accuracy was calculated

according to (23). The results regarding the position

estimation accuracy are shown in Figs. 4, 5, and 6, for

the x, y, and z coordinates, respectively. The accuracy

obtained in the experiment (solid line) is similar to

the theoretical accuracy (dashed line) for the x and

y coordinates. For the z coordinate, however, the

theoretical accuracy is calculated accurately only in

the vicinity of the transmitters and the receiver. For

further ranges, the theoretical predictions are more

pessimistic than the actual accuracy. This is due to

the fact that from the two solutions of the quadratic

equation we select the one with positive altitude,

thus, we are using a priori knowledge about the target

properties. We are thus censoring the results, which

leads to errors lower than predicted by the theory.

B. Real-Life Results

The SX algorithm was tested on real-life

data acquired with an experimental passive radar

called PaRaDe (passive radar demonstrator) [6, 7]

constructed at the Warsaw University of Technology.

It is an FM-based system equipped with an 8-element

antenna array. In the experiment, a single target

was selected at the position [8:3,8:4,2:3]T km. The

estimation accuracy was calculated by comparing the

results from the passive radar with data provided by a
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Fig. 4. Simulated (solid line) and theoretical (dashed line)

standard deviation of position error in x direction.

Fig. 5. Simulated (solid line) and theoretical (dashed line)

standard deviation of position error in y direction.

Fig. 6. Simulated (solid line) and theoretical (dashed line)

standard deviation of position error in z direction.

TABLE IV

Standard Deviation of the Bistatic Range Errors

Transmitter ¾Ri (m)

Tx1 (Pruszkow) 120

Tx2 (Raszyn) 567

Tx3 (Warsaw) 266

TABLE V

Standard Deviation of the Position Estimation Errors

Standard Deviation Estimated Theoretical

¾x (m) 558 777

¾y (m) 1248 1388

¾z (m) 3826 5612

commercially available Mode-S receiver. That allowed

us to calculate the estimation accuracy in bistatic

coordinates as well as in Cartesian coordinates.

Firstly, the positions obtained from the Mode-S

in Cartesian coordinates were converted into

bistatic data. These results were compared with the

measurements from the passive radar. The standard

deviations of the bistatic range measurements

corresponding to the three transmitters are listed in

Table IV. The bandwidth of the FM radio signal

is of the order of tens of kilohertz, which provides

range resolution of a few kilometers. However the

achievable accuracy of range measurement can be

much better, especially for high signal-to-noise

ratios. In our example the precise range measurement

was carried out by fitting a parabolic curve to the

target echo. The range estimate corresponded to the

maximum of the fitted parabola. The achievable range

resolution is on the order of hundreds of meters,

which is an order of magnitude better than the size

of the range resolution cell.

Calculations of the standard deviation for the

scenario are presented in Table V. It was assumed that

the position of the target does not change significantly,

so that the accuracy remains fairly constant throughout

the experiment. The estimated accuracy was calculated

as the standard deviation of the difference between the

position from the Mode-S receiver and from the radar

in the appropriate direction (x, y or z). The theoretical

values of the standard deviation corresponded to the

values from the diagonal of the P matrix calculated
according to (23). The values of ¾Ri needed for

the calculation of the P matrix were taken from

Table IV. As the results show, the theoretical results

are confirmed by the measurements.

V. CONCLUSIONS

The paper presented two methods for calculating

the Cartesian position of a target in a multistatic

passive radar. The algorithms were derived based

on solutions available for TDOA systems. For the
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two algorithms presented, SX outperforms SI in the

considered example. For this reason, we recommend

the SX method for use in passive radar. This result

is contrary to that in the TDOA case, where the SI

method performed better [12].

Since both algorithms are based on closed-form

equations, they are fast, so they can be easily used in

real-life systems, e.g. for track initialization, even in

the case of numerous transmitters and targets.

The actual accuracy of the SX method appears

close to theoretical results, as suggested by our

Monte-Carlo simulations. The algorithm has also been

successfully applied to real-life data.
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