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ABSTRACT

This paper presents a study about the possibility of implementing approximations to the Neyman-
Pearson detector with C-Support Vector Machines and 2C-Support Vector Machines. It is based on ob-
taining the functions these learning machines approximate to after training to minimize the empirical
risk, and on the possible implementation of the Neyman-Pearson detector with these approximated
functions. The function approximated by a C-Support Vector Machine after perfect training is a binary
function, with only two possible outputs. When the output of the C-Support Vector Machine is compared
to a threshold, whose value is the intermediate between the possible outputs, an implementation of the
Maximum-A-Posteriori classifier is obtained. On the other hand, the function approximated by a 2C-
Support Vector Machine after perfect training is also a binary function, but this machine implements the
Neyman-Pearson detector for a fixed probability of false alarm and probability of detection pair, that can
be selected with the parameter y which controls the costs of the error function. Some experiments about
radar detection have been carried out, in order to confirm the theoretical results. The results of these
experiments allow us to confirm that the 2C-Support Vector Machine can implement very good ap-

proximations to the Neyman-Pearson detector.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper tackles the application of Support Vector Machines
(SVMs) to approximate the Neyman-Pearson (NP) detector. This
detector maximizes the probability of detection (Pp), for a fixed
probability of false alarm (Pgs) [1], and it is especially useful in
binary hypothesis tests when the assignment of costs and the
knowledge of prior probabilities are difficult. The NP criterion has
been widely used in radar applications such as optimum radar
detector design in different radar scenarios [2,3,4-8], MIMO radars
[9-11], and distributed radar sensor networks [12,13]. It has also
been applied in some other topics: watermarking [14,15], fault-
induced dips detection [16], biometric [17], or gravitational waves
detection [18].

If pziHy) and p(ziH,) are the likelihood functions of the input
random vector z for the null hypothesis (Hp) and the alternative
hypothesis (H;), respectively, a possible implementation of the NP
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detector consists in comparing the Likelihood Ratio (LR) (A(z)) to a
threshold selected according to Pga requirements (1,(P)), as ex-
pressed in (1) [19]:
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This approach requires a complete characterization of the
likelihood functions. Usually, statistical models of interference and
targets are assumed and their unknown parameters (e.g. the target
strength, or the Doppler frequency) are modeled as random vari-
ables. When the distributions of these parameters are known a
priori, the optimum detector in the NP sense can be implemented
by comparing the average likelihood ratio (ALR) to a detection
threshold fixed according to Pgs requirements [19]. The ALR can
lead to intractable integrals that should be solved by numerical
approximations.

Another possibility is to obtain the Maximum Likelihood esti-
mators of the parameters, implementing the Generalized Like-
lihood Ratio Test (GLRT). An approximation of these parameters
will affect the Pg4, and detection losses are to be expected when
the interference or target statistical properties vary from those
assumed in the design.
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A different approach to implement nearly optimum detectors
in the NP sense consists in using a learning machine that ap-
proximates a discriminant function after training, which imple-
ments the NP detector if it is compared to a suitable threshold. The
possibility of approximating the NP optimum detector using su-
pervised learning machines trained to minimize the sum-of-
squares and the cross-entropy errors has been previously studied
in [20,21], respectively. Those studies concluded that the NP de-
tector can be approximated by using a learning machine trained to
minimize those error functions with a training set consisting of
experimental data, but without prior knowledge of the likelihood
functions and without statistical models assumed in the design.
The main drawbacks of this approach are the difficulty of obtain-
ing representative training samples, and the selection of the best
learning machine architecture.

In [20,21], learning machines with only one output were con-
sidered. The learning machines outputs were compared to a
threshold in order to decide in favor of the null or the alternative
hypothesis. The threshold allows us to fix the desired Pg. An
equivalent implementation consists in varying the bias of the
output neuron [22,23]. A different approach was used in [24],
where a neural network (NN) with two outputs in interval (0, 1)
was used, and the subtraction of both outputs was compared to a
threshold. This approach is equivalent to using a NN with only one
output and desired outputs (- 1, 1) [25]. Radial Basis Function
Neural Networks (RBFNNs), Second Order Neural Networks
(SONNs) and committees of NNs have also been applied to ap-
proximate the NP detector [26-28].

Another intelligent agent is the Support Vector Machine (SVM).
It is an approximate implementation of the method of structural
risk minimization that can provide good generalization on detec-
tion and classification problems without incorporating problem-
domain knowledge [29,30]. In [31], SVMs are applied to detection
problems; the Receiver Operating Characteristic (ROC) curves of
the original SVM-based detectors were obtained using two stra-
tegies for varying the Pgs, which consist in varying the bias of the
original SVM formulation (C-SVM) or the costs assigned to the two
types of error (missed detections and false alarms) using cost-
sensitive SVMs (2C-SVMs), respectively. In [32], the design of
support vector classifiers with respect to the Neyman-Pearson
criterion is studied. It is extended in [33], where 2C-SVMs were
used to approximate detectors based on the NP and minimax
criteria. They consider the minimization of objective functions
which depend on the desired Pgs. The best results have been ob-
tained experimentally with greedy searches to find the best
training parameters for obtaining the highest Pp for a given Pgs.
Nevertheless, as far as the authors know, there is no theoretical
study in the literature about the capabilities of SMVs to approx-
imate the Neyman-Pearson detector for a wide range of Pg4 values.

The analysis to follow is based upon that in [20], employing its
methodology to study the possibility of using C-SVMs and 2C-
SVMs for implementing good approximations of the NP detector. It
was demonstrated in [33] that 2C-SVMs can be trained to obtain a
desired Pgs when the detector is implemented with the learning
machine, but it has not been demonstrated that at the same time
the resulting Pp is maximum, as in the Neyman-Pearson test. Our
approach is more general, and it considers the possibility of ap-
proximating a discriminant function f;(z) with the trained learn-
ing machine, which can implement approximations to the Ney-
man-Pearson detector by comparing its output to a threshold:
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A method and a sufficient condition for the discriminant
function fy(z) to be used to implement the Neyman-Pearson

detector are going to be used throughout. The method was pro-
posed in [35], and consists in checking the fulfillment of the fol-
lowing requisites:

1. The discriminant function f,(z) approximated by the learning
machine after training must depend on the problem likelihood
functions.

2. If the discriminant function is compared to a threshold 7o, the
likelihood ratio A(z) can be isolated, obtaining an expression
similar to (1).

3. For the expression (2) to be equivalent to the Neyman-Pearson
detector, it is sufficient that the relation between 7, and 7, does
not depend on z.

In other words, if 7o can be determined for each pair (s, Pz),
and it is not a function of z, the rule (2) is an implementation of
the NP detector. In this paper, this sufficient condition is applied to
determine the suitability of C-SVMs and 2C-SVMs to approximate
the NP detector. To that end, the discriminant functions approxi-
mated by the C-SVM and 2C-SVM after training are obtained.

Besides, we demonstrate that the discriminant functions that
are obtained after C-SVM and 2C-SVM perfect trainings are binary,
making the selection of Pg4 unfeasible by varying the threshold the
discriminant function is compared with. At the same time, it is
demonstrated that C-SVMs can be used to implement the Mini-
mum Probability of Error binary classifier, and 2C-SVMs, can be
used to implement the Neyman-Pearson detector for a given pair
of (P, By), that corresponds to one point of the ROC curve. The
value of Pg4 could be adjusted by varying one of the parameters
during training.

The paper is structured as follows: in Section 2, the problem to
be solved is presented, jointly with a study about SVMs. The study
of the possibility of using C-SVMs to approximate the Neyman-
Pearson detector is included in Section 3. An equivalent study with
2C-SVMs is carried out in Section 4. In Section 5, experiments and
results are presented to illustrate the previous theoretical study.
Finally, the main contributions of this paper are summarized in
Section 6.

2. Background about SVM classifiers

Let us consider a learning machine with one output to classify
input vectors z € R into two hypotheses or classes, Hy and H;. Let
Z; be the set of all possible input vectors generated under hy-
pothesis H; with probability density function p(ziH;), and Z the
ensemble of all possible input vectors (Z, U Z; = Z). A training set
X =XyU X, (X c Z) is available, where X; c Z; is composed of N;
pre-classified patterns, with desired outputs d;, i€ {0, 1}, and
N =Ny + N;. The output of the learning machine is denoted by
f(z, a), representing a the set of parameters to be adjusted during
training. Once the learning machine is trained, it operates by
comparing the output to a threshold, deciding in favor of H; if the
output is higher than the threshold, and in favor of Hy if the output
is lower than the threshold. It is represented in Fig. 1.

In this section, SVM classifiers are described, introducing
training as an optimization process subject to some constraints.
The objective functions for training C-SVMs and 2C-SVMs are also
presented, with the parameters that must be adjusted.

2.1. C-SVM classifiers

Let us suppose a learning machine designed to learn the
mapping z; - d;, vV z; € X;. The machine actually performs the
mapping z; — f(z;, ), where a defines the adjustable parameters
of the learning machine. In this context, the expected risk [29], or
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Fig. 1. Scheme of the elements of the tackled detection problem.
just the risk, is defined as:
1
Ra@) = [2ly - f@ olp@ yidzdy 3

where p(z, y) is the joint density of the input and the desired
output, y. In a binary classification problem, the empirical risk Repmp
is defined to be just the mean error measured on the training set
[34], and it is expressed in (4), being d; i € {0, 1} the desired
output for any pattern z € X;:

1
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In C-SVMs, the function implemented by the learning machine
is a linear function of the results of mapping the input pattern z
into a higher dimensional space H with the functions &(z), that
are known as “kernel functions”. The parameters of the learning
machine are the weights vector w, the bias constant, and the
parameters the functions ¢(z) depend on. The function im-
plemented by the learning machine is going to be represented as
f@) for simplicity:

f@=w'o@ +b 5)

In the simplest implementation of the detector, for each
training example z, the function should provide f(z) > 0,if z € X
and f(z) <0, if z € X, that is, training examples from the two
hypotheses are separated in # by the hyperplane w’®(z) + b = 0.
The SVM is based on the hyperplane which maximizes the se-
parating margin between the two classes that can be obtained
mathematically by minimizing the following cost function, subject
to the separability constraints [29]:

_1 2
Jw) = > II'w || 6)
subject to:
df(z)=1; i=1,2,..,N 7

In practice, the training data may not be completely separable
by any hyperplane in space . To relax the separability constraints
in expression (7), slack variables denoted by &; are introduced as
follows:

df(z)>1-¢& §20;

For an error to occur df(z;) < 0; therefore, the corresponding
slack variables & > 1, so that ¥, & is an upper bound on the number
of training errors. The objective function can be changed to assign
an extra cost for errors, and the optimization problem to solve in

i=1,2,...,.N ®)

C-SVM becomes the following [32,33]:
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subject to:
df@y>1-¢ i=1,..,N
&E>0, i=1,..,N

The constraint dif(z;)) > 1 — &, together with & > 0, is equivalent
to &= max(0, 1 — df(z;)). Hence, the learning problem is equiva-
lent to the unconstrained optimization problem defined in ex-
pression (10) for C-SVMs:

|1 <
mfm{i wi?+C) max©,1 - dif(zi))}

i=1 (10)

or equivalently, u(-) being the Heaviside step function, and
normalizing by the number of training patterns:

i=1

N
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where %Z:\i (1 = df@pul - df(zy) is the soft-margin loss

function, and % || w|f is the regularization term.
2.2. 2C-SVM classifier

The C-SVM formulation implicitly penalizes errors in both
classes alike. As an alternative, 2C-SVMs allow the control of the
cost associated with the two possible errors: Cyg associated with
false alarms and C,; associated with detection losses
(0<Ci<1;i,j €0, 1) i #j)

Cio and Cp; can be related, using an additional parameter y
(0 <y < 1), obtaining Cyr = G, and C(1 — y) = Cy;. The primal for-
mulation of the 2C-SVM is [32,33]:

min{l lwiF+C Y &+Cl-p) ) 5,}
fer| 2

ieXp ieX

(12)
subject to:
df(z)=1-¢&;

Considering again that the constraint dif(z;) > 1 - ¢, together
with ¢ > 0 is equivalent to & = max(0, 1 — d;f(z))), the equivalent
expression (13) for 2C-SVMs is obtained:

rr}in{; Iwi?+C Y max[O, 1- dif[zi]]
e

i=1,..,N§>0, i=1,.. N

ieXp
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or equivalently:

doers 5ol
B AT

which is again formulated as the summation of a loss function, and
a regularization term.
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3. C-SVMs capability to implement discriminant functions
useful to approximate the NP detector

In this section, the function f,(z) which minimizes the un-
constrained objective function defined in expression (11) is ob-
tained, under some general conditions. Let us consider that the
conditions for perfect training are fulfilled, understanding that
“perfect training” is achieved when the learning machine is a
“sufficiently powerful model” that is able to approximate the dis-
criminant function to any degree of accuracy, and the minimum of
the error function is indeed reached (the training set must be a
representative subset of the input space, and the learning algo-
rithm must be able to find the appropriate minimum).

In the context of the detection problem this paper deals with, it
is supposed that the desired outputs of the learning machine are
d; = - 1and d;=1, for z; € X, and z; € X;, respectively. The number
of training patterns is supposed high (N - ), and representative
(patterns are generated according to the likelihood functions
p(ziHy). Therefore, the training process is equivalent to the fol-
lowing optimization problem:

I ; €
mfm{’gm {21\1 TwiF+5 D>, (- df@yud - dif(zi))}} s

-0 £
i=1

In these conditions, the regularization term (% | w ||2) tends
to zero, and the functional to be minimized only depends on the
loss function of expression (11) [36]. Using the Strong Law of Large
Numbers, the optimization problem can be formulated with ex-
pression (16):

ool () A A
(1 - 1(@)u(1 - F(a)plalt)iz

Generally, the function f,(z) that minimizes expression (16)
should be obtained using Calculus of Variations and particularly
the Euler-Lagrange differential equation [37,38]. The calculus of
variations can be used to find the function f(z) that minimizes the
functional J(f) defined as follows:

In=f I(z.f(z), J@ d@ af(z))dz
Zz

oz, ' oz, oz,

HO) + P(H,)

(16)

a7

where [ is twice differentiable with respect to the indicated
arguments, and f is a function in C*Z) that assumes prescribed
values at all points of the boundary §Z of the domain Z. The
function f that minimizes J(f) can be obtained by solving the Euler—
Lagrange equation (18), where f, = %:

o _ 1[0_1] _
A 18)
In our problem, the functional to be minimized only depends

on f(z), and after avoiding unnecessary constants can be expressed
as follows:
HO)

L= L) o bl0 o o(e) =
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I(f(z)) depends on the Heaviside step function, making the
application of the Euler-Lagrange equation unfeasible. In order to
find the solution of (16), it is important to consider the fact that
I(f(z)) is a continuous piece-wise function, which can be expressed
as follows:

P(Hpp@H)(1 - f(z)) if
P(Ho)p@Hp)(1 + f(@)+
+P(Hpp@H)(1 - f(2)) if -1<f@@) <1

PHpp@H)( + f2)) if 1<f@ (20)

f@<-1
If(@) =

After some simple manipulations, expression (21) is obtained,
where A = P(H)p(zliH,), D = P(Hy)p(zH,), B=D + A,and C=D - A:

A-Af@ if f@)<-1
If@)=49 B+Cfz) if -1<f@<1
D + Df(z) if 1<f@ 21

According to (21), I(f(z)) is linear in f(z) and strictly non-ne-
gative in each considered interval. Note that A, D > 0,V z € Z, so
that the slopes of the first and the last stretches of I(f(z)) are ne-
gative and positive, respectively. The slope of the second stretch
can be positive or negative, depending of the values of A and D. It
is easy to reason that the minimum is reached at f(z)=-1 or
f@) =1, depending on the slope of I(f(z)) in the interval ( -1, 1).
Therefore, the function f,(z) which minimizes the functional of
expression (16) is given by

f@ = -1 if P(Hpp(z\H)) < P(Hy)p(zIHy)
O 1 if PHpp(Hy) > P(Hy)p(ziHy) 22)

It means that after training, the C-SVM will provide an output
close to -1 for those input vectors for which
P(H))p(zIH,) < P(Hy)p(zIH,), and an output close to 1 for those input
vectors for which P(H,)p(zH;) > P(Hy)p(zIHy). If a decision is taken
in favor of hypothesis Hy when the output is close to —1 and in
favor of H; when the output is close to 1, the Maximum-A-Pos-
teriori (MAP) classifier is implemented, that is equivalent to the
Minimum Probability of Error classifier in the binary case. The
decision rule of the Minimum Probability of Error classifier is:

H;
PH)P@H,)Z PHo)p@Hy)
Hp (23)

This result is equivalent to the one obtained in [20] for the
Minkowski Error with R=1, and it is interpreted as follows: since
the function approximated by the C-SVM is binary, the selection of
the threshold in order to achieve a required Pg, is not possible,
concluding that this learning machine is not suitable to approx-
imate the NP detector, and can only approximate the Minimum
Probability of Error classifier.

4. 2C-SVMs capability to implement discriminant functions
useful to approximate the NP detector

It has been demonstrated in Section 3 that C-SVM does not
allow implementing the Neyman-Pearson detector by just mod-
ifying the detection threshold, or some parameters of the objective
function. To achieve this objective, the use of 2C-SVMs is proposed.
The objective of this section is to find the function f;(z) which
minimizes the unconstrained objective function defined in ex-
pression (14), supposing again that the conditions for perfect
training are fulfilled.

The number of training patterns is supposed high (N — ) and
representative (patterns are generated according to the likelihood
functions p(ziH;)). In this case, the training process is equivalent to
the following optimization problem:
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Also assume, without loss of generality, that the desired out-
puts of the learning machine are d; = — 1and d;=1, for z; € X; and
z; € X;, respectively. Applying the Strong Law of Large Numbers to
(24), the optimization problem can be formulated with expression
(25):

min{ ¢ [ (2 Holp(zlo)(1 +1(z)u(1 +f(2)
(1= P(HIP(2)(1 = (21 - f(2)z]

25)

The functional to be minimized is expressed in (26), where
constant C has not been considered, because it does not have any
influence on the solution of the minimization process:

S 1(s(2))ee
= [, (sPHazH1 4 (1 1(2)

+ (1= P(H)p(2) 1 = F(@)u(1 - £(2) )iz o6

I(f(z)) depends on the Heaviside step function, making the
application of the Euler-Lagrange equation unfeasible. Following a
procedure similar to the one applied in Section 3, I(f(z)) is ex-
pressed as a piece-wise function:

(1 - PHYp@HY( - f(@)) if
rP(Ho)p(ziHo)(1 + f(@)+

+(1 = pPHp@H)(1 - f2) if -1<f@ <1
rPHp@H)(1 + f@) if  1<f@ @7

f@<-1

which can also be expressed as (28) to be analyzed easily:

A-Afe if f@<-1
If@)=4 B+Cf@ if -1<f@<1
D + Df(z) if 1<f@ (28)

In expression (28), constants A, B, C, and D have the following
values: A= (1 - y)P(Hp)p@H,), D =yPHyp@H,, B=D + A, and
C =D - A. Considering that A,D > 0,V z € Z, and following the
same reasoning that was used in Section 3, the minimum of I(f(z)),
and therefore, the solution of the minimization problem for-
mulated in expression (25) is:

f@= -1 if (1 - y)P(H)pzHy) < yP(Hy)p(zIHy)
0 1 if (1 - y)P(Hy)p(ziHy) > yP(Ho)p(ziHp) 29)

After training, the 2C-SVM will provide outputs close to +1 or
-1, depending on the conditions expressed in (29). If the output of
the 2C-SVM is compared to a threshold 5 = 0, the intermediate
value between +1 and -1, the decision rule is equivalent to:

p@H) " yP(Hy)
p@Hy) 1y (1 — y)P(Hy) 30)

Varying the value of y we can select different thresholds of the
likelihood ratio based detector. These thresholds will be denoted

M. By varying n, = %, we can implement detectors with

pairs (P, By) corresponding to different points of the Receiver

Operating Characteristic (ROC) curve of the Neyman-Pearson
detector.

The implemented decision rule will maintain the constant false
alarm property, provided that the likelihood functions and the
priors of both hypotheses in the operating environment are equal
to those considered in the design process (training sets).

In conventional radar detectors, Constant False Alarm Rate
(CFAR) techniques are implemented for adaptively adjusting the
detection threshold using estimations of the interference para-
meters, assuming a specific model of p(ziH,). In our case, the
function that is implemented by the 2C-SVM after training is
binary, and there is not any parameter to be adjusted. Therefore, in
a first approach to implement CFAR techniques, assuming a spe-
cific model of p(ziH,) during training, a robustness study of the 2C-
SVM based detector could be carried out by varying the para-
meters of the model in the test set, to identify the parameters
variation interval where Pps mismatch is bearable. After that, a
bank of 2C-SVMs could be trained, one for each identified variation
interval.

5. Experiments and results

The results of some experiments are presented in this section
to demonstrate the capability of 2C-SVMs to approximate the
optimum Neyman-Pearson detector. Different y values are chosen
to select different Pgs, and the objective is to confirm that the
obtained Pp is close to the maximum value of the NP detector.

Some detection problems have been selected, for which the NP
detector can be analytically formulated and used to be compared
with the 2C-SVM-based detectors. More precisely, the detection of
Swerling I (SW-I) and Swerling II (SW-II) targets [39] in Additive
White Gaussian Noise (AWGN), and Swerling V (SW-V) targets
with unknown Doppler shift in non-Gaussian interference, are
considered [40]. The study is completed with results of detectors
using real radar data of a public database.

For testing the detectors, Pg4 and Pp values have been estimated
using Monte-Carlo simulations with a number of test vectors high
enough to guarantee a relative estimation error lower than 10%.
Furthermore, a study of the influence of the training patterns
number on the detection performance is carried out. Because of
that, the polynomial kernel of expression (31) with d=2 has been
selected, due to the better performance compared to radial basis
for large training sets [41,42]:

Gz, z) = (1 + (z; )" €30

L
(i, 2)) = ),z 1Z;
ir &j ; i,144,1 32)

5.1. Detection of SW-I and SW-II targets in AWGN

In the experiments carried out in this subsection, the con-
sidered input vector (Z) consists of P complex samples, which are
echoes provided by a pulse coherent radar. Echoes can represent
SW-I or SW-II targets in AWGN (hypothesis H;), or only AWGN
(hypothesis Hp), and a value of P=8 has been used. The hypothesis
are considered equiprobable for generating the training sets
(P(Hp) = P(H;) = 0.5).

SW-I and SW-II models have been selected because the for-
mulation of the NP detector is known, and can be used for com-
parison purposes. The decision rules of the NP detector for SW-I
and SWH-II targets in AWGN are expressed in (33) and (34), re-
spectively [40]:
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(S (Bt 3

iz1  Ho (34

where

® Z; are the complex-valued echoes of the input vector.

® (P represents the threshold of the decision rules obtained
after simplifying the likelihood ratio based detector. The
threshold #; is related to #;, and to the parameter y used to
adjust the values of P, and Pp.

2C-SVM based detectors have been designed to obtain pre-
determined values of Pg, selected by varying the value of y. To
analyze the performance for a wide range of Pgs values, we have
selected the set Py, € {10’2, 1073, 107, 10’6}. The 7y, 7, and Pp, for

those Pgs values when SNR = 7 dB are presented in Table 1.

The resulting 2C-SVMs have been tested to know the actual Pp
and Pga, in order to determine how close the implemented de-
tectors are to the NP optimum detectors. The results are presented
in Tables 2 and 3. Although 2C-SVMs have the theoretical cap-
ability of approximating any desired point of the NP detector if the
training sets have infinite number of elements, a finite number of
patterns (N) has to be used. It is expected that the higher N, the
better the approximation to the NP detector.

Results show that detectors based on 2C-SVMs trained with a y
value fixed according to Pgs requirements, are able to approximate
the associated point of the NP detector ROC curve with high ac-
curacy. Furthermore, the higher the number of patterns in the
training set, the better the approximation, as expected from the
theoretical analysis of Section 4 (a better approximation to the NP
detector is obtained when the actual P, is closer to the theoretical
one, and the Pp is higher).

5.2. Detection of SW-V targets with unknown Doppler shift in K-
distributed clutter

This detection problem has been selected because the relation
between y and Pg cannot be easily determined, being a good ex-
ample to show how a general radar detection problem could be

Table 1
nirand y values associated with Pg; € {1072, 1073, 1074, 1075} for Swerling I and 11 in

AWGN. The probabilities of detection of the NP detectors SNR=7dB is also
presented.

Pra Parameter Target model
Swerling | Swerling II
102 i 21674 0.3638
% 0.6843 0.2667
Pp 0.8944 0.9936
1073 i 20.4604 7.4175
Y 0.9534 0.8812
Pp 0.8455 0.9815
104 i 1971525 125.5957
% 0.9950 0.9921
Pp 0.7988 0.9585
10-° e 2.0038.10% 2.5036.10%
b4 0.99995 0.99996
Pp 0.7135 0.8776

Table 2
Pp (SNR = 7 dB) values obtained by 2C-SVMs based detectors for Swerling I and II in
AWGN, trained with the y parameters determined in Table 1.

Desired Pgs Regularization parameter Swerling I Swerling 11
C
N=200 N=1000 N=200 N=1000
1072 Cc=103 0.8885 0.8909  0.9892 0.9916
C=10° 0.8930 0.8936 0.9916 0.9933
103 Cc=103 0.8428 0.8433 09726 0.9794
c=10° 0.8431 0.8452 09770 0.9812
104 c=103 0.7919 0.7958  0.9325 0.9478
C=10° 0.7977 0.7982 09328 0.9578
10-¢ c=103 0.6488 0.6958  0.7995 0.8618
C=10° 0.6907 0.7055  0.8547 0.8710

solved with 2C-SVM:s. In general problems, the relation between
7 and Ppy is unknown a priori, and the most suitable y value
would be determined by a grid search in a suitable interval.

The value of the regularization parameter C is also important,
because if only a low number of training patterns is available, the
regularization parameter should be high, in order to play down the
importance of the regularization term in expression (24). On the
contrary, if the number of training patterns is very high, the reg-
ularization parameter value has less importance. Usually, a grid
search in the (C, y) space could be carried out, training the 2C-SVM
with each pair (C, y), and evaluating its performance on a held-out
validation set. Finally, the grid search algorithm outputs the set-
tings that achieves the highest score in the validation procedure.

In this section, the design of robust detectors for SW-V targets
with unknown Doppler shift (£2) in spiky K-distributed clutter has
been considered [4,5]. In this case study, the Average Likelihood
Ratio (ALR) detector, which is expressed in (35), depends on an
integral which involves the calculation of a modified Bessel func-
tion of the second kind:

A 2 4@ PK,_p(@(@))de

P

K b 35)
where
® g and b are defined in the following expressions:

a= 4u((i - 10%-exp(j(()R + Q)))ngg-
SCR 3
Z - 10W~exp(j( O + Q)))*)
(36)

b= [a@xdz" 37

® P is the number of target echoes collected in a scan.

® v is the shape parameter of the K-distribution, which is set to
0.5 in this sectzion.

® k=" ke{1,2,..,P)); p is the clutter one-lag
correlation coefficient, and clutter power is set to unity as a
normalization criterion.

® SCR is the Signal to Clutter Ratio expressed in dB.

0y is the received phase of the target echo.

®  is the unknown Doppler shift, that is modeled as an uniform
random variable in the interval [£2;, Q,].
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Table 3

Pg values obtained by 2C-SVMs based detectors for Swerling I and II in AWGN, trained with the y parameters determined in Table 1.

Desired Pgs Regularization parameter C Swerling 11 Swerling 1
N=200 N=1000 N=200 N=1000
102 Cc=103 1.2756-10~2 1.1229.1072 2.7617-10~2 1.9478.1072
C=10° 1.0189-.1072 1.0074-1072 11795.102 1.0510-1072
1073 Cc=103 1.1470.1073 1.1400-1073 2.6970-10~3 1.8420.1073
C=10° 1.1300-1073 1.0043.103 1.2470-103 1.0302.10°3
104 Cc=103 1.2200-10~* 0.9700-10~* 2.7800.10~4 1.6000-10~4
C=10° 0.9600-10~4 1.0001-10~4 1.504-104 1.0047.10~*
10-° Cc=103 2.8443.107° 1.3000-10° 3.4100-107° 1.8547.10°
C=10° 1.9701-10-° 1.1022.10°° 2.5087-107° 1.2010-107°

The ALR approach usually gives rise to integrals without ana-
lytical solution. As an alternative, sub-optimum solutions based on
the Constrained Generalized Likelihood Ratio (CGLR) are usually
used. In both cases, the estimation of the detection threshold for
the desired Pgs can be really difficult, requiring the application of
numerical integration techniques, such as Monte-Carlo simula-
tions. In addition, the estimated threshold will be valid only for the
assumed parameters of the clutter model. In radar scenarios with
variable clutter parameters, a table of detection thresholds versus
Pra, for each considered parameter value, should be created. A
CFAR technique based on the estimation of clutter parameters and
the selection of the detection threshold from the table could be
designed.

In this paper, the sub-optimum detector based on the CGLR has
been used as reference, in order to make comparison with the
proposed 2C-SVM based detector easier. It is expressed in (38):

e

H
maxA[.Qk] 2 nCGLR[PFA], k=1, .., K
Hp (38)

where K is the finite number of LR-based detectors, designed
for equispaced discrete values in the variation range of £2, and the
corresponding CGLR detector will be denoted CGLRk. Assuming
P=38, Op=r/4, and €2 is uniformly distributed in
[z/2 — z/10; z/2 + =/10], ROC curves of CGLRx detectors in un-
correlated and correlated (g. = 0.9) clutter have been obtained. The
(2 variation interval has been proposed in order to obtain useful
radar coverages and SCR is set to 9 dB and -3 dB, for uncorrelated
and correlated clutter respectively, to obtain Pp higher than 80%
for Pgy of interest in radar applications.

In Fig. 2, the ROC curves of CGLR, detectors for different values
of k are depicted. It is showed that the CGLRp detector obtains
almost the best results for SW-V targets in uncorrelated clutter.
However, the CGLR,p detector is a good choice for SW-V targets in
correlated K-distributed clutter (Fig. 3). Therefore, the CGLRp and
CGLR,p are chosen for comparison purposes, for detecting SW-V
targets in uncorrelated and correlated clutter, respectively.

In order to design the 2C-SVMs based solutions, a grid search in
the C and y space has been carried out to determine the values that
guarantee a desired Pgs. The 2C-SVMs have been trained with
N=500 training patterns, which is a compromise between detec-
tion performance and computational cost. The detectors are im-
plemented by comparing the 2C-SVMs output to a fixed threshold,
1o = 0. The estimated Pr4 values are presented in logarithmic scale
for the different pairs (y, C) in Figs. 4 and 5, where the detection of
SW-V targets in uncorrelated spiky K-distributed clutter, and in
correlated K-distributed clutter are considered, respectively. In
both cases, results confirm that the higher the y, the lower the Pg,.
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a° 05

0.4

0.3 —e— CGLRy

CGLF{"5
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0.1 4

0 1
10°® 10 10
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Fig. 2. ROC curves of CGLR detector for SW-V targets with SCR = 9 dB, 6 = z/4 and
2 uniformly distributed in [z/2 - z/10; z/2 + z/10], in spiky uncorrelated K-dis-
tributed clutter.
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Fig. 3. ROC curves of CGLRy detector for SW-V targets with SCR = — 3 dB, 6 = z/4
and @ uniformly distributed in [z/2 — #z/10; z/2 + #/10], in spiky correlated
(o = 0.9) K-distributed clutter.
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Fig. 4. 10log,(Prs) obtained with a grid search [C; y] of 2C-SVMs based detectors for SW-V targets (training SCR = 9 dB) in uncorrelated spiky K-distributed clutter.

5.3. Application to real radar data

In this section, examples of radar detection with real data using
2C-SVMs are presented. Data were acquired by a pulsed Doppler
X-band radar deployed on Signal Hill by the Council for Scientific
and Industrial Research (CSIR) [43]. The datasets used in this study
are available to the international radar research community on
[44].

Signal Hill location (Fig. 6) provided 140° azimuth coverage. A
large sector spanned open sea whilst the remainder looked to-
wards the West Coast coastline from the direction of the open sea.
Grazing angles ranging from 10° at the coastline to 0.3° at the
radar instrumented range coverage of 37.28 NM (Nautical Miles)
were obtained. The pulse repetition frequency (PRF) was 2 kHz
and the range resolution was 15 m. A collaborative 4.2 m inflatable
rubber boat, that can be considered as a point target, was used
during some measurements.

Datasets were recorded with different local wind conditions.
The average wind speed varied between 0 knots and 40 knots and
the significant sea wave height ranged between 1 m and 4.5 m. A
file of this public database has been selected for the experiments.
It has the reference Dataset 10-104. TTrFA, and the main para-
meters of the acquisition are summarized in Table 4 [44].

2C-SVMs have been trained for detection purposes, and the
obtained results have been compared to the results of the re-
ference detectors. For designing the reference detectors, a statis-
tical characterization of real radar data has been carried out.
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O  1.000

0,999 0,99

4
x 10
15Fm

i llum. Are
1 Avg. Wind
Avg. Wave |
Boat (Raw)
05 L -
£
=y 0oz
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= N
N
-05
-1
-15
-1 0 1
East [m] x104

Fig. 6. Plan overview of radar deployment site [44].
5.3.1. Statistical characterization of real radar data
For a sea state higher than 2 (sea wave height higher than
0.5 m), low grazing angles and high resolutions, the K-distribution

-20

0,95 0,9 0,7

Y

Fig. 5. 10log; (Pss) obtained with a grid search [C; y] of 2C-SVMs based detectors for SW-V targets (training SCR = - 3 dB) in correlated (g, = 0.9) spiky K-distributed clutter.
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Table 4
Acquisition specifications of Dataset 10-104. TTrFA [44].

Acquisition time: 64.48 s (1984
patterns)

Range extend: 1903.7 m (128 gates)

Pattern repetition interval 0.0325 s
Antenna azimuth: 354.8-357.6 N
Significant wave height: 1.68 m,
2448 N

Patterns of 64 complex samples
Grazing angle: 0.93°-1.06°
Tx frequency 8.8 GHz

CDFs

103

10

— K-Distribution CDF

Rayleigh CDF

-5 1 1 1
10
1072 107" 10°

x(t)l
Fig. 7. Comparison of the empirical cumulative distribution function for the am-

plitude of 27" range gate of Dataset 10-104.TTrFA, with the K-distribution and
Rayleigh cumulative distribution functions.

can be used for modeling sea clutter amplitude [6,45-47]. The
significant wave height of the selected file is 1.68 m, corresponding
to moderate (code 4) sea state. The grazing angles are low, and the
resolution can be considered high. Under these conditions, K-
Distribution can be used for modeling sea clutter amplitude.

The Empirical Cumulative Distribution Function (ECDF) of the
samples of the 27th range gate (1630.47 m), associated with only
sea clutter returns, has been estimated. This ECDF has been com-
pared with the K-distribution and the Rayleigh Cumulative Dis-
tribution Functions (CDF), defined in expressions (39) and (40),
respectively. The estimated and the theoretical CDFs for the
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Fig. 9. Doppler Shift of 27th range gate (a) and 65th range gate (b) of Dataset 10-
104.TTrFA (RCS [dB m?/ Hz]).

amplitude of the data samples are shown in Fig. 7. The visual in-
spection shows a very good agreement with the K-Distribution
(the ECDF and the K-distribution CDF overlap):

Ex)=1- exp"‘z/ 27,

2 7\ v ||
SRR

x>0 39)

(40

CDFs

——ECDF
Rayleigh CDF

15 2 2.5 3
Ix(®)

Fig. 8. KS-test statistic of the texture for different L. (left) and CDFs for the amplitude of speckle component (L. = 0.18 s(right)).
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Fig. 10. 10log(Pr,) resulted from a grid search (y, C) of 2C-SVMs based detector designed for target and clutter models that fit to real radar data.

Table 5
Comparison of detection capabilities of 2C-SVM, CGLR;s and envelope detectors for
Dataset 08-028. TStFA.

Detector Pra Pp
Envelope detector 1.0244.10°4 0.1750
CGLRyg 1.0183-1074 0.5101
SVM C y Ny
10 0.99 969 1.1024.10~ 0.4879
10 0.95 989 20.1065-1074 0.8372
10° 0.7 997 23.3584.10~% 0.5111

To increase the rigor of our study, a goodness-of-fit test has also
been carried out to assess whether the proposed distributions are
suited to the dataset. The Kolmogorov-Smirnov (KS) statistic has
been used, which quantifies a distance between the empirical
distribution function of the sample and the cumulative distribu-
tion function of the reference distribution. We have obtained that
the K-distribution with shape parameter » =3.9357 and scale
parameter p = 0.3969 is the one that best fits with the data.

The K-distribution is formed by compounding two separate
probability distributions, one representing the radar cross-section
(RCS) and the other representing speckle. The component re-
presenting the RCS is a slowly varying non-negative Gamma pro-
cess that introduces a power modulation of the local backscatter,
consequence of longer wavelength sea waves (texture), z[n]. The
component representing speckle is modeled as a complex Gaus-
sian random process, g[n]. As the power modulation is slower than
the speckle component, it is possible to approximate the received
clutter sequence by the following expression:

zk[n] r[k]g[n], n=k .,k+L -1

where L. is the coherence length of sea texture, defined as the
number of samples for which the texture can be considered con-
stant. Expressions (42) and (43) can be used to estimate the tex-
ture and the hypothetical speckle sequences, respectively, for each
possible L:

41

k:n+’i—1

> lzdn?
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In Fig. 8, the KS-test values, obtained by comparing the texture
sequence CDF to a gamma distribution for different L. are pre-
sented. The threshold of a 5% significance level is also depicted. It
is possible to conclude that the coherence length of sea texture is
between 0.08 and 0.43 s (the distance determined by the KS-test is
below the threshold). As the 64-pulses-patterns time is 0.0325 s, a
constant texture can be considered in each pattern. Additionally,
the real and imaginary parts fulfill the Jarque-Bera goodness-of-fit
test (it is a goodness-of-fit test of whether sample data have the
skewness and kurtosis matching a normal distribution), so the
Gaussian distribution fits the real and imaginary parts of speckle
(the magnitude is Rayleigh). The speckle amplitude ECDF is de-
picted on the right side of Fig. 8.

The Autocorrelation Function (ACF) of the pulses associated to
the same pattern was also studied. The estimated one-lag corre-
lation coefficient is equal to 0.966. In Fig. 9, the spectra for the
27th and 65th range gates are presented. 27th range gate is as-
sociated with sea clutter correlated returns that are localized close
to the zero Doppler. 65th range cells corresponds to target echoes
which presented a normalized Doppler shift frequency variable
Qe[ -0.6;06].

After that, CGLR and SVM detectors were designed for detect-
ing SW-V targets with unknown Doppler shift in K-distributed
clutter. In Section 5.2, the analytical expression of the CGLR in the
case study is detailed and, using the same parameters, P=8 in-
tegrated pulses were considered. The estimated target power and
angle were p;=2.0068 and @ = 0.0157rad, respectively. As
p. = u = 03969, SCR equal to 7.04 dB was considered. According to
the available data in 1984 patterns and 128 range cells, a
P, = 1074, with estimation error lower than 20% was expected.

A grid search in the C and y space was carried out to design the
2C-SVM detector. The associated Pps were estimated using the
same fixed threshold, n, = 0. Results are depicted in logarithmic
units in Fig. 10. The detection performances of the 2C-SVMs de-
signed with the selected pairs (y, C) with the real radar database
are compared with the Pp obtained with the CGLR,¢ and the en-
velope detectors for Py =107 The results are presented in
Table 5.

The detectors based on CGLR16 and 2C-SVM approximate the
Neyman-Pearson detector. Therefore, the objective is to maximize
the Pp for a given Pgs. They obtain higher Pp than the envelope
detector for almost the same value of Pg. Thus, they present a
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Fig. 11. Estimated centroids for the real radar matrix: envelope detector (a), CGLR,¢ detector (b) and 2C-SVM designed with (y = 0.99, C=10) (c) detector.

significant improvement with respect to the envelope detector in
the NP sense.

The 2C-SVM based detector designed with (y = 0.99, C=10)
offers similar performance to the CGLR,g detector for the P, clo-
sest to the desired one. Fig. 11 shows the considered detection
schemes outputs for Dataset 08-028. TStFA. The estimated cen-
troids are depicted and the target trajectory is clearly detected by
the CGLRs and 2C-SVM detectors.

6. Conclusion

This paper deals with the capability of SVM-based radar de-
tectors to approximate the NP detector. Supervised Learning ma-
chines can approximate the NP detector if they are trained with a
suitable error function, such as the mean-squared error or the
cross-entropy error [20]. In practice, for a good approximation to
be obtained, the training set must be a representative subset of the
input space, the function implemented by the learning machine
must be sufficiently general that there is a choice of adaptive
parameters which make the error function sufficiently small, and
the learning algorithm must be able to find the appropriate
minimum of the error function. But, from the theoretical point of
view, the training error function has been demonstrated to be the
key in order to obtain good approximations.

This paper extends the study to C-SVMs and 2C-SVMs, as
learning machines that could be used to implement detectors
close to the optimum NP one. The theoretical study is based on
obtaining the function the learning machine converges to after

training, if a sufficiently large number of training patterns is used.
Training is carried out by solving the unconstrained optimization
problems defined in expressions (11) and (14), for the C-SVM and
2C-SVM, respectively.

To obtain the functions the learning-machines converge to after
training, the calculus of variations is used. It has been demon-
strated that the C-SVM implements a function with only two va-
lues, which are obtained depending on which one is higher,
P(H,)p(z\H;) or P(Hy)p(ziHy). If the output of the C-SVM is compared
to a threshold, with the intermediate value between the possible
outputs, the implemented detector is equivalent to the Maximum-
A-Posteriori (MAP) classifier.

Similarly, the 2C-SVM implements a function with only two
values, but they are obtained depending on which one is higher
(1 = y)P(Hpp(zIH,) or yP(Hy)p(zHy). In this case, the detector that is
implemented when the output of the 2C-SVM is compared to a
threshold with an intermediate value between the possible out-
puts, is equivalent to the Neyman-Pearson detector for a fixed pair
(B4, Pp)- The values of P4 and Pp vary with the parameter y, which
can be used to select different points in the ROC curve of the NP
detector.

Some experimental results have been presented to demon-
strate the theoretical study. First, 2C-SVMs have been trained to
detect Swerling I and Swerling II targets in AWGN. The study has
been carried out for three different desired Pr, 1072, 1073, and
10~%. The results confirm that very good approximations to the NP
detectors are obtained if a sufficiently high number of training
patterns is used, and the regularization parameter C is high.

A more complex detection problem has also been studied, for
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which obtaining the value of y for the desired P, is not easy. A grid
search in the C-y space has been carried out, demonstrating that
the higher the value of y, the lower the Pr,4. Selecting the value of y
to approximate Py = 1074, it is demonstrated that the higher the
number of support vectors, and the higher the value of C, the
better the approximation to the NP detector.

The study has been completed with some experiments with
real radar data, from a public database. To compare the perfor-
mance of 2C-SVM based detectors with reference detectors, a
statistical model of the data have been obtained. The parameters
of the model are used to design the reference detectors, and the
main conclusion is that 2C-SVMs performances are quite similar to
the best reference detectors, which approximate the optimum NP
detector.

From this study, we conclude that 2C-SVMs are quite good
systems to approximate the NP detector for a given point of the
ROC curve. On the contrary, C-SVMs only can approximate the
MAP classifier, which is the optimum classifier from the point of
view of minimum probability of error, if the hypotheses prior
probabilities are equal. This study must be completed in the future
to take into consideration the different alternatives for the basis
functions of the learning machines, and the computational cost
comparison to classical detectors with worse performance.
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